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ACCELERATED SPECTRAL APPROXIMATION 

RAFIKUL ALAM, REKHA P. KULKARNI, AND BALMOHAN V. LIMAYE 

ABSTRACT. A systematic development of higher order spectral analysis, intro- 
duced by Dellwo and Friedman, is undertaken in the framework of an appro- 
priate product space. Accelerated analogues of Osborn's results about spectral 
approximation are presented. Numerical examples are given by considering an 
integral operator. 

1. INTRODUCTION 

In [10] Osborn considered numerical solution of an eigenvalue problem for a 
compact operator T on a complex Banach space X and obtained error estimates 
for the approximation of eigenvalues, eigenvectors and spectral subspaces, when 
a sequence (Tn) of compact operators approximates T in a collectively compact 
manner. In [11] Vainikko obtained similar results under (discrete) regular approx- 
imation. Subsequently, numerical solutions of eigenvalue problems for compact as 
well as noncompact operators have been studied extensively ([1], [3], [4], [6], [7], 
[9]). 

In [5] Dellwo and Friedman developed a new approach to the spectral approxima- 
tion of a compact operator by solving a polynormial eigenvalue problem of a higher 
degree. The eigenvalue problem associated with the qth degree operator polynomial 
was referred to as the qth order spectral analysis of T, q = 1, 2, .... They proved 
that, if A is a nonzero eigenvalue of T of algebraic multiplicity m and ascent 1, then 
the qth order spectral analysis provides sets Jq,n of approximate spectra associated 
with A, which satisfy the order relationship 

max A1-A =- Ol () Iq 11(T-T)-Tnll)- 

Several numerical examples were considered to illustrate the effectiveness of higher 
order spectral analysis. However, the exact nature of the set Jq,n was not specified. 

In this paper an attempt is made to develop a methodology for a systematic 
study of higher order spectral analysis. We transform a polynomial eigenvalue 
problem associated with a higher order spectral analysis to an equivalent ordinary 
eigenvalue problem in an appropriate product space. We thus obtain error estimates 
for accelerated approximation of eigenvalues, eigenvectors and spectral subspaces 
in exactly the same fashion as the ordinary spectral approximation. We consider a 
cluster A of nonzero eigenvalues of T of total algebraic multiplicity m < oo and show 
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that the qth order spectral analysis provides exactly m eigenvalues Aq,n,i ... i Aq,n,m 
(counted according to their algebraic multiplicities) near the cluster A. If A and Aq,n 
denote the weighted averages of the eigenvalues in A and of their approximations 
Aq,n,li... ,Aq,n,m, respectively, and if e < min{JAI: A E A}, then 

I A- Aq,nJ <Eq 1 (T- ny JR(P) 11,I 

where C is a constant independent of n and q. This gives an accelerated analogue 
of Osborn's result for the approximation of the arithmetic mean A. We also prove 
that 

A - Aq,nrJ - q 1j (T -Tn)lTnH). 

This estimate improves upon the result of Dellwo and Friedman quoted earlier. 
If A consists of a single eigenvalue A of ascent 1 > 1, then error estimates for the 
approximation of A by individual eigenvalues Aq,n,l i... , Aq,n,m is obtained-by taking 
the lIth root of the above-mentioned error estimates. This slower convergence is 
illustrated in the last section by considering an integral operator. We give similar 
estimates for the approximation of eigenvectors and spectral subspaces as well. 
Results analogous to the improved error estimates given in Theorems 3 and 4 of 
[10] will be given in another paper. The methodology developed in this paper can be 
used to obtain accelerated analogues of various spectral refinement schemes which 
will be discussed in subsequent papers. 

In Section 2, we give improvecf versions of results from [10] for the sake of com- 
pleteness and for use in the subsequent sections. In Section 3, we develop a frame- 
work for higher order spectral analysis and obtain accelerated analogues of the 
results in [10] for the approximation of a cluster of eigenvalues, eigenvectors and 
spectral subspaces of a bounded linear operator. 

2. PRELIMINARIES 

Throughout this paper X will denote a complex Banach space and BL(X) the 
Banach space of all bounded linear operators on X along with the operator norm. 
For T in BL(X), let u(T) and p(T) denote the spectrum and the resolvent set of 
T, respectively. We consider a nonempty subset A of u(T) \ {0} which is separated 
from the rest of the spectrum of T and from 0 by a simple closed positively oriented 
rectifiable curve IF lying in p(T). Let ?(F) denote the length of IF. For z E p(T), we 
let 

R(z) = (T -zl)-l, 

so that 

P = 
j R(z) dz 

is the spectral projection associated with T and A. We assume that rank P 
m < oo. Then A consists of eigenvalues A1, . . . , Am of T, counted according to their 
algebraic multiplicities. For nonzero subspaces Y and Z of X, let 

S(Y, Z) = sup{dist(y, Z): y E Y, IlyII = 1}. 

Then 
8(Y, Z) = max{8(Y, Z), 6(Z, Y)} 

is known as the gap between Y and Z. For T E BL(X), we denote by R(T) and 
N(T) the range space and the null space of T, respectively. 
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In this section we consider a sequence (Tn) in BL(X) which satisfies 
(H1) (lTnll) is a bounded sequence, 
(H2) 11 (T - Tn))TIH - 0 and I I(T - Tn)Tn 0 0 as n -* oo. 

While it may be possible to weaken these hypotheses to some extent, they allow a 
simplicity in the presentation and are easy to check in several important examples. 
For z E p(Tn), we let 

Rn(z)= (Tn - zI)-. 

Lemma 2.1 (Nair [9]). Let E be a closed subset of p(T) \ {0} and 8 = 

min{lzl: z E E}. Then there is a constant cl such that 

max || R(z) || < cl. 
zCE 

Let no be a positive integer such that 

II(T-Tn)211 < 62 and cl 11 (T-Tn)Tn 1l < ? 

for all n > nO. Then E C p(Tn) and 

maxIIRn(z) 1 < 2c, [1 + hT 
- Tl] C2 

for some constant C2 and all n > no. 

For a proof of this result we refer to [9]. Letting E = IF in Lemma 2.1, we see that 
IF C p(Tn) for all large n. Let 

=Pn r Rn (z) dz 27ri t 

denote the spectral projection associated with Tn and IF. It can be seen, as in the 
proof of Theorem 3.1 of [9], that 

- (P-Pn)P1 -* 0 and fl(P - Pn)Pnh 0 as n - oo. 

Hence rank Pn = rank P = m for all large n (cf. [9], Proposition 2.2.). 

Theorem 2.2 (Osborn [10]). For all large n, 

8(R(P)IR(Pn)) < ( 
)clc2min{H(T-Tn)IR(P)l, fl(T-Tn)IR(Pn)H} 

where cl and c2 are as in Lemma 2.1 with E = F. 

Proof. The proof of Theorem 1 of [10] shows that 

S(R(P) I R(Pn)) < ? ) clc2 1 (T - Tn) IR(P)1 

Since, with 6 = min{ lzl E 17}, 

11(T - Tn))R(P)f < || (T - Tn)Pl < 2(F)cl (T - Tn)TIl 
- 0, 

as n -* oo, we take no so large that 8(R(P), R(Pn)) < 1/2. 
As dim R(Pn) = dim R(P) < oo, by a result given by Kato [8], 

6(R(Pn),R(P)) < 1- (R(P) R(Pn)) < 26(R(P) R(Pn)) 
Thus 

6(R(P), R(Pn)) < ( Clc2 ||(T - Tn) R(P) 
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By interchanging the roles of T and Tn, we obtain 

6 (R (Pn) 1 R (P)) < ( )c1C2||1(Tn -T) g R(Pn)l 

Since rank Pn = m for all large- n, u(Tn) n Int IF consists of m eigenvalues 
Anj,,... , An,m of Tn, counted according to their algebraic multiplicities. Let 

~n Anjl + * + An,m A72 = 
m 

denote their arithmetic mean. 

Theorem 2.3 (Osborn [10]). For all large n, the maps 

An = Pn7R(p) R(P) -4 R(Pn) and Bn = PIR(Pn): R(Pn) -4 R(P) 

are isomorphisms, IIAJ-1l < 2, JIBn-'1H < 2 and 

IA-An I < 2 min { Pn || | (T-Tn) IR(p) ||, ||Pll 11 (T-Tn) IR(Pn)H} 

If A = {A} and the ascent of A equals 1, then for each j = 1,T.. , 

IA - An,j' < 2 min {cCnIlPn VT -I(T-Tn)IR(P)fI, dnIlIPIl II(T-Tn)IR(Pn)Il}, 

where 
1-1 

Cn = S IlAIR(P) - A-1TnAn 111-1-k IlAIIR(p) -TIR(P) Ilk, 
k=0 

1-1 

dn= Z IA'IR(Pn) -Tn IR(Pn) n-1-k flAI ( - B97TB . 

k=0 

Proof. The argument given in the proof of Theorem 2 of [10] shows that An is 
bijective and IlA-111 < 2 for all large n. The same argument shows that Bn is 
bijective and fIB-i11l < 2 for all large n. Define T = TIR(P) and Tn = An-1TnAn. 
Then 

I-Anr = 1-Itrace (T-Tn) I < IlT-Tn 1l 

- sup{lA7-1Pn(T - Tn)xll x e R(P), llxl = 1} 

< 2lPn||l ||(T-Tn)lR(P)H.- 

If A = {A} and the ascent of A is 1, then since (AIIR(P)-T)' = 0, we have for 
j=1,... ,m 

IA - Anj I < || (AIIR(P) -tn)l | = || (AIIR(P) - Tn)l - (AIIR(P) - t)l 
1-1 

= 11 E(AIIR(P)- Tn)--k(T T_n)(AIIR(P) - T)kH 

k=0 

K Cn ||T-Tnll. 

Similarly, defining Tn2 = T7IR(Pn and T = Bn-1TB7, we obtain the other estimates. 
The proof of the estimates for IA - An,jJ is adapted from [4], p. 685. O 

Let A = {A} and 1 be the ascent of A. We state the following theorem from [10]. 
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Theorem 2.4 (Osborn [10]). Let A, be an eigenvalue of Tn such that An -* A as 

n -* oo. Suppose that wn E N(Tn - AnI) with lWnll= 1. Then there is some 

Un E N(T - Al) such that 

llUn -Wn || -< C { || (T -Tn) JR(P) 1 

where c is a constant independent of n. 

3. A FRAMEWORK FOR HIGHER ORDER APPROXIMATION 

Let q be a positive integer and Xq denote the set of all column vectors x 
[x1,... ,xqj t with xi,... ,xq in X. Define 

JJxJJK0o = max{ |lxj || :j=1,** , q}. 

Then Xq is a Banach space with respect to the norm 11 1l. We shall identify 
the adjoint space of Xq with the set of all column vectors x* = [x1,... ,x*' with 
xl, ... ., xq in X*. Define 

1x*fll HH= 11x* + + 11Xq* 1 

If we let 
(x, x*) = (xi, xl) + - + (xq, xq), 

then it is clear that I(x, x*)J < JJxJloJJx*JJi. We have X1 = X and we let T1 = T. 
Now let q > 2. Consider the operator Tq: Xq - Xq given by 

Tq[xI, . . v , Xq]t = [Txi,X1,.,. * ,Xq_ ]. 

Then Tq can be written as the q x q matrix 

-T 0 ... --.. 
I 0 .. .. 0 TO. 

0 . 0 I 0 

We have JJTq Joo = max{ 1, JITIH }. For nonzero z E C, it can be easily seen that 
Tq - zIq is invertible if and only if T - zI is invertible, and then (Tq - zIq)-' can 
be written as the q x q matrix 

R(z) 0 ... 0 
R(z) _I ... 

z z 

R(z) I I 

Zq-l Zq-l ... z 

Thus a(Tq) \ {0} a(T) \ {0}. In particular, IF c p(Tq) and a(Tq) n Intr = A. Let 

Pq =-2 j(Tq - zIq)-ldz 

denote the spectral projection associated with Tq and A. Since 0 lies outside IF, we 
have 
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where 

Si= X R)dz, j = 1 ...,q -1 

Now [x1,... , xq]t E R(Pq) if and only if xi E R(P),X2 = SlXl, ,xq Sq-1X1 

Hence the operator Jq: R(P) -* R(Pq) given by 

Jqx = [x, Six,... , SqlX]t, X c R(P), 
is a surjective isomorphism and 

rank Pq = rank P m. 

Next, the spectral projection associated with Tq: Xq - X* and A = {A: A e A} 
is given by 

Pq [xi .. ,xq*t 
- 

[P*x*l + Sl* X2 + + Sq*-l x*, O, ... ., 0t 

Thus [x.,...x ,x]t E R(Pq) if and only if x* E R(P*),x* = - =x 0. Hence 
the operator Kq: R(P*) -* R(Pq ) given by 

Kqx* = [x*,,...,o t, X* R(P*), 
is a surjective isomorphism. Also, 

(Jqx, Kqx*) = (x, x*) for all x e R(P) and x* c R(P*). 

Next, consider A e A and let PA (resp. PA) denote the spectral projection 
associated with T and A (resp., T'q and A). Then rank PA = rank PA just as before, 
so that the algebraic multiplicity of A as an eigenvalue of Tq is the same as the 
algebraic multiplicity of A as an eigenvalue of T. Consider 

DA = P,(T - Al) and DA = P,(Tq - AIq). 

Then 

DA[xl, ,xq]t = P,[(T-AI)xl, xl-Ax2,... ,Xq--Axq]t 
= [PA(T - AI)xi, SA,1(T - AI)xl,... ,SA,q-l(T- AI)xl]t, 

where 

S,R,j =) dz, j = 1,... ,q-1, 

I, being a simple closed curve which isolates A from the rest of u(T) and from 0. 
By the usual techniques of contour integration, it can be seen that SA,jPA = SA,j = 

P,SA,jforj=l,... ,q-1.Hence 

DA[xl,... ,xqlt= [DAxl, SA,1DAx1,... ,SA,q-1DX1l]t. 

Similarly, for k = 2, 3,... , we have 

Dk [xl, . .. , Xq]t = [D'x 1, S>,\,1DkX1 I . .. 
k 

>q_DX, ]t. 

Thus for any positive integer k, we have D k 0 if and only if Dk = 0. This shows 
that the ascent of A as an eigenvalue of Tq is the same as the ascent of A as an 
eigenvalue of T. Thus we see that the eigenvalue problem 

To = AO, q E X, q 5& 0 

is equivalent to the eigenvalue problem 

TqDq = ADqi, bq E Xq , bq 0 O 

for each q = 2, 3 .... 
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Let (Tn) be a sequence in BL(X). We have X1 = X and we let T1,n = Tn. 
Let now q > 2. For n = 1, 2, ... , let An = T - Tn and consider the operator 
Tq,n Xq -* Xq given by 

Tq,n [XiI... vxq]t = A 
E\TnXj+li Xli ... iXq-1| 

Then Tq,n can be written as the q x q matrix 

- Tn AnTn n 
I 0 0 O 

o 

O O ... I 0 

We consider the eigenvalue problem 

Tq,nqn = Aq,n4q,mn bq,n G Xq, bq,n O. 

Then it is easy to see that 17q,n = ,q,n, (,\q5 ) J , where the first com- 

ponent q5q,n e X satisfies 

(Aq,n)- Z(Aq,n n) 1 JTn) nqq,n 0 

(cf. (2.4) of [5]). The case q = 1 is considered in Section 2. For the rest of the 
paper we let q > 2 and assume that 

(H1) (IlTnll) is a bounded sequence, 
(H2') I (T - Tn)211 - 0 as n -* oo. 
Note that the results of Section 2, where q = 1, do not hold under the hypotheses 

(H1) and (H2'). As a simple example, consider X - C2 and 

T 
a 

[ a1 b ] Tn 
a n abn n] n ==1, 2, .... 

where a, b, an, bn are nonzero complex numbers with b : -a and an - a, bn -* b as 
n -* oo. Then au(T) = {0, a + b}, while au(Tn) = {an, bn}. Thus the nonzero simple 
eigenvalue a + b of T is not approximated by the nonzero eigenvalues an and bn of 
Tn- 

We have 

IlTq,nlloo < max{ 1, lTnH + |lAnTnT + + /n 11}, 

II(Tq - Tq,n)Tqll oo n l/ + n lnTll + l.+ L l7TnH, 
II (Tq - Tq,n)Tq,nloo = 0 nTnll. 

Since 11 An1 -* 0 as n -* oo, there is an integer no such that II A 2 < 1/2 for all 
n > nO. As 

{ IlTn 1 11/ || j/2 if j is even 
n n - I 11 AnTnTl II A2 II(j-1)/2, if j is odd 
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00 

and A' Ink < 2 for n > no, we have 
k=O 

HTq,nmHoo < max{ 1, 2(HITnI4 + flA\nTnI)}, 
(Tq -Tq,n)Tqfloo ? 2(lTnI|| + ITI) Il /\n II 

II(Tq-Tq,n)Tq,nl oo < max{flTn|l|, nT}fl/nl- 

As IfTnll is bounded, this shows that flTq,nllac is bounded in q and n, 

I(Tq- Tq,n)TqlIoo -* 0 and II(Tq - Tq,n)Tq,nlloo -* 0 

as n -* oo, uniformly for q = 2,3,.... Thus the sequence (Tq,n) satisfies the 
hypotheses (H1) and (H2) of Section 2 uniformly in q= 2,3,.... 

The following two identities will be useful. For nonzero z in C, 

( ) Z ( E ZJ )q 1 q T 
(**) zI _ E '\ Tn _ E /\nn =zI-T+ n 

z kz?jo zi)Z 

j=0 

j=o j=o 

3.1. Main results. We prove an important estimate. 

Proposition 3.1. Let min{jA1: AI:E A} > 6. If the curve 1F lies in{z e C: z > 

and c1 =maxflIR(z)lI, then 

||(Tq - Tq,n) I R(Pq)Hoo <) I 17)cil f(T -n)qI R(P) 

for all n and q. 

Proof. For x= [xl,... ,xq]t C Xq, we have 

q- 1 

(Tq-Tq,n)x =AnX - \ AnTx?, 0 1 ? ] 
j=1 

Since 

Pqx= [Pxl, SlXl,. vSq-1X1]t, 

it follows that 

q-1 At 
(Tq - Tq,n)pqx [(AnP -E j TnSj)xl, 0,. , ? 

By the definitions of P and Sj, we have 

q-1 1 2 F 
AnP - ZLMTnS3 2r - IAn - n R(z)dz. 

=JL =1 Jr 
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But the identity (**) shows that 

A/n i J nT) R(z) [T-zI + zI-E AT R(z) 

j=1 Zi j=o~L zj q2 
ZI+ A3(zI-T) +A AT1 

T -1 /+ j / R(R(z) 

E z- + Zq-i 
j=1 

since TR(z) I + zR(z). Since 0 lies outside F, j 0 for j 1..., q, so 

that 

II(Tq - Tq,n)Pqx 00 = nYi 

where Yi (-21i Rz()dz) z1. Now if x E R(Pq), then x1 = Px1 E R(P) and 

since P commutes with R(z), we see that Yi E R(P). Also, IlYi11 <? (2F)ci lxi and 
27rEq-l 

hence 

-Tq,n)IR(Pq) 0oo < 2)q-1 n(T- )q-R(P) 

It follows that if one fixes an integer q > 2, then the results given in Section 
2 become available for the operators Tq and Tq,n, and accelerated analogues of 
Theorem 2.3 and Theorem 2.4 would follow immediately. However, the constants 
appearing in various error estimates will depend on q. In order to find the nature 
of this dependence on q, we proceed as follows. It may be mentioned that the use 
of the norm 11 II,, on Xq (instead of the commonly used norm 11 112) allows us to 
achieve our aim. 

First we consider the invertibility of Tq,n - ZIq. 

q-1AT 

Proposition 3.2. (a) If z 54 0 and zI - E n is invertible in BL(X), then 
j=o 

Tq,n - ZIq is invertible in BL(Xq). 
(b) Let E be a closed subset of p(T) and 0 , E. Then there is a positive integer 

nO such that for all n > nO and q = 2,3,... , we have E C p(Tq,n). 
If, in fact, min{lzl: z C E} > 1, then for all n > no and q = 2,3,... 

max fl(Tq-zIq)-1 lII, < C1 and max fl(Tq,n - ZIq)-l II,, < C2 

for some constants Ci and C2 independent of n and q. 

Proof. (a) Let 

k-i A- 
3 T0 Ak,n(Z) = zI - E /\) TnI 

j=o 
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For z 7& 0, let Bq,n(z) denote the inverse of Aq,n(z). Then it can be verified by 
direct multiplication that the inverse of Tq,n - ZIq is given by the q x q matrix 

-Bq I - BqAi z(I - BqA2) ... ... Zq-2( -BqAq-1) 
Bq -BqAi I-BqA2 *. .. zq-3 (I-BqAq-1) 
z z 

-Bq -BqAi -BqA2 -BqAq-2 I-BqAqv 
Zq-2 Zq-2 Zq-3 * z qAq- 

-Bq -BqAi -BqA2 -BqAq-2 -BqAq- 
Zq-1 Zq-1 Zq-2 

... z2 

where we have written Bq for Bq,n(z) and Ak for Ak,n(Z). 
(b) Since E is a closed subset of C and 0 , E, min{I z z E E} = 6 > 0. Since 

Tn is bounded and max R(z) < oo, there is some M > 1 such that 

(max IIR(z) II max ITnll AnThTlK< M. 
zeE = 12,2... 6 

Since lAf2 11-- 0 as n -- oo, there is a positive integer nO such that IlAf2 11 < for 

all n > no. Let z C E and n > no. As M > 1 and 11/A2111/2 < 6, we see that zI-,An 
is invertible. 

By the identity (*), we have 

Aq,n(Z) =z(zI-/An)- (zI-T + nnTn) 

Again, since 

IT /A2 
qATj n J ni 1 q/2, if q is even 

- A 6 (q-1)/2 if q is odd, 

it follows that 

I R(z) <1.Tn 

Hence for all z E E, n > no and q = 2,3, ..., the operators zI-T+ T nT 

(and consequently) Aq,n(z) are invertible in BL(X). By (a) above, it follows that 
E c p(Tq,n) for all n > nO and q = 2,3,... 

Next, assume that 6 > 1. Then 

_ f ~~~IIR(z)f k 
(Tq-zIq) lloo < max {IR(z)II, lZ)k +E jp: k q . 1 

< IIR(z)l+8 1 

Thus 
max 11 (Tq -zIq) 1 l1oo < Cl, 
zEe 

where Ci is a constant independent of q. 
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We have noted earlier that as n -> oc, I(Tq-Tq,n)TqJo and I(Tq-Tq,n)Tq,nll o 

tend to 0 uniformly in q = 2, 3, .... Hence we can assume, without loss of generality, 
that for all n > no and q = 2,3, .... 

II(Tq -Tq,n)2 < 2 and C1II(Tq-Tq,n)Tq,nI < 2. 

By Lemma 2.1 applied to the operators Tq and Tq,n, we have 

|I(Tq,n - ZIq)llo <0 2C, [1 + Tl q q,nmll0] < C2, say. 

We remark that the condition min{ lzl z E E} > 1 cannot be dropped from 
part (b) of Proposition 3.2, that is, if min{ lzl: z E E} < 1, then II(Tq - zIq)-1Iloo 
may tend to infinity as q -> oc. The simplest example is obtained by letting X = C 
and for a fixed c E C, 

Tx = cx, x E X. 
Then for z E C with z 54 c and z :A 0 and for x E X, (T - zI)-lx x/(c - z), so 
that 

(Tq-z-q1[xl,... ,Xq] [= _' ( -)- Z'- 

Xl X2 ...xq 
Zq-1(C_ Z) Zq-1 zJ 

Since 

(Tq -zIq)-l [1, 0,- Olt cz zc ) z-(-) 

we have 

11 (Tq - zIq)-1loo > 1 - l q -1 IC zl 

Thus if Iz < 1, then II(Tq - ZIq)1 tends to infinity as q -> 00. 
Taking E = F, we see that for all n > no and q = 2,3,... , F c p(Tq,n), so that 

Pq,n -2i j (Tq,n-zIq)1 dz 

defines the spectral projection associated with Tq,n and Alq,n = (Tq,n) n Int F. 

Theorem 3.3. If min{IAI: A - A} > 1 and the curve F lies in {z E C: z > 61 
where 6 > 1, then for all large n and q = 2,3, .. ., we have 

max II (Tq-zI 1 q1 ? < C, and max |(Tq,n - ZIq) 1Ho < C2 
zErF zErF 

for some constants C, and C2, independent of n and q. Also, 

II(Tq-Tq,n)Pqll0o < 2(F)Cill(Tq-Tq,n)Tqll)o, - 27r6 

kl(Pq-Pq,n)Pqllo0 - 2< 010C21(Tq-Tq,n)Pqllo0, 

I(Tq-Tq,n)Pq,nI00 - 2( rC211(Tq-Tq,n)Tq,nllo0, 

(pq - Pq )Pq,nlloo < C1(P lo(F) 
ll(P 

- 
qlnPq,lICo < 27010 2 11(Tq - Tq,,n) Pq,n 00 (O 



1412 R. ALAM, R. P. KULKARNI, AND B. V. LIMAYE 

In particular, 

1l(Pq - Pq,n)Pqloo -O 0 and II (Pq - Pq,n)Pq,n l oo + 0 

as n -> oo, uniformly in q = 2,3, .... 

Proof. By part (b) of Proposition 3.2, we have 

max 1 (Tq-zIq )-1fl oo < C1, max II (Tq -zIq)-1l loo < C2 zGF, zGF, 

for all n > nO and q = 2,3 .... By using the resolvent identity it follows, again as 
in the proof of Theorem 3.1 of [9], that 

(Pq - Pq,n)Pq -2i j (Tqn - zIq)1(Tq,n - Tq)Pq(Tq - zIq)-1 dz, 

(Pq - Pq,n)Pq,n 2 j (Tq - zIq)-l(Tq,n - Tq)Pq,n(Tq,n- zIq)-1 dz. 

Further, 

(Tq - Tq,n)Pq 2 i j (Tq - Tq,n)(Tq - zIq)1 dz 

27ri Ir ?(Tq - Tq,n) [Tq(Tq - zIq)1 Iq] dz, 

and 

(Tq - Tq,n)Pq,n - 2ri J (Tq - Tq,n)(Tq,n - ZIq)1 dz 

- 2zri Jr (Tq - Tq,n) [Tq,n(Tq,n - zIq) - Iq] dz. 

The desired results follow by noting that-21. j o0, as F does not enclose 

0, and II(Tq - Tq,n)TqJJoo 00 0, I(Tq - Tq,n)Tq,nlloo 0 as n -> oo uniformly in 
q =2,3,.... Li 

In order to treat the case when min{JAI: A e Al} < 1, we consider a scaling of 
the operator T. Let Ol be a positive number. Then 

a(caT) {=aA: A e(T)} 

Also, if A is an isolated eigenvalue of T having finite algebraic multiplicity and P, 
is the corresponding spectral projection, then alA is an eigenvalue of oaT with the 
same spectral projection, since 

-2i f j(aT -wI)-ldw 2i j (T - zI)-ldz = P,\. 

Let Tq(ca) and Tq,n(at) denote the operators obtained by replacing T and Tn by 
oaT and atTn in Tq and Tq,n, respectively. 

Lemma 3.4. For ca > 0, let Dq(at) Xq + Xq be given by 

Dq(al)[xi,. Xq]t = [xi, alX2, a ,Oq- lXq]t. 

Then 
(a) Tq(6a) = (Dq({a))A (Tq)Dq(a), Tq,n(at) {(Dqca))- (aeTq)Dq(a) 

a(Tq(at)) = {faA : A c- a(Tq)l, a(Tq,n(at)) = {faA : A C- a(Tq,n)l} 
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(b) Let Pq(at) and Pq,n(ae), respectively, denote the spectral projections associ- 
ated with the operators Tq(ca) and Tq,n(ac) with respect to the curve alF. Then 

(i) Pq(at) = (Dq(at)) 1 PqDq(ae), Pq,n(at) = (Dq(at))-' pq,Dq(a)j 
(ii) [X1,... ,xq]t E R(Pq(a)) (resp., R(Pq,n(a))) if and only if 
[Xi , aX2,... , q-lXlq]t E R(Pq) (resp., R(Pq,n)), 
(iii) rank Pq (c) = rank Pq, rank Pq,n (a) = rank Pq,n 

Proof. (a) Considering the q x q matrix representing the operator Tq and the q x q 
diagonal matrix diag (1, a, .. . , aq -1) representing the operator Dq(ca), we obtain 
Tq(at) = (Dq(a6))-1 (aiTq)Dq(ai) by direct multiplication. Since Tq(ca) and caTq are 
thus similar operators, their spectra are identical. The consideration for Tq,n (a) is 
exactly the same. 

(b) We have 

Pq(at) = 2iri J(Tq(a) - wIq)-1dw 

2iri Jr (Dq(at)) (6Tq - WIq) Dq(al)dw 

(Dq(at))-1 ( J(Tq - zIq)-ldz) Dq(a) (Dq(a))-l PqDq(). 

Now x belongs to R(Pq(ca)), that is, Pq(ca)x = x if and only if PqDq(ca)x = Dq(a)x, 
that is, Dq(ca)x belongs to R(Pq). This implies that rank Pq(ca) = rank Pq. The 
consideration for Pq,n(ar) are exactly the same. O 

Theorem 3.5. For all large n and all q = 2, 3, ... , let 

Yq,n {xl E X [xl... ,Xq]t E R(Pq,n) for soMe X2,... ,Xq E X}. 

Then 
(a) rank Pq,n = rank Pq = rank P = dim Yq,n 
(b) Let min{JAI: A EA A} >,e. Then for all large n and all q =2,3,... 

(R(P) <n mn { | (T-TMn)q R(P) , (T-Tn)qTn } 

for some constant C, independent of n and q. 

Proof. First we consider a special case when min{JAI: A Ec A} > 1. In that case, we 
assume min{ lzl:zE z } = 8> 1. 

(a) Since 

II (Pq - Pq,n)lloo ? ||(Pq - Pqn)PqJo + fl(Pq - Pq,n)Pq,nmloo, 

it follows from Theorem 3.3 that there is a positive integer no such that for all 
n > no and all q = 2,3,... , we have fl(Pq -Pq,n)21oo < 1, so that rank Pq,n = 
rank Pq. We have already noted that rank Pq = rank P for all q. Next, since 6 > 1, 
we note that for j = 1,... , q-1, 

llS3l l 21rI= 
Z) dzll < 27r) maxIIR(z) 2 iJ zj - 27r8J zEr 

< max IIR(z) ~c, say. 
2ir zer 
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Thus for x E R(P), we have 

flJqXlloo maX{flxf, f|Slxfl,... , flSq-1xfll} 

? max{1, Si ... *,i Sq-il11111X 

? max{1, c}llxll. 

Let 01,... , q5 be a basis of R(P)- and 01,... , qm be the corresponding adjoint 
basis of R(P*). For j = 1,... , m, let lbq,n,j denote the first component of Pq,m Jq jk 
For k = 1,... ,m, we have Kqq5 = [q5,O, ,0]'. Hence 

(q/q,nj, qk)) = (Pq,rnJqq5j, Kqq5*) 

for j,k,= 1,... ,m. Nowfixj,1 < j <m. Then 

IlPq,nJqq5j -Jqq5jfloo = l(Pq,n -Pq)PqJqqjlloo 

< 11(Pq,n - Pq)Pqlloo I|Jqqj 11o 

< max{1, c} || (Pq,n - Pq)Pq lloo flq5j 11 

Since Il(Pq,n - Pq)Pqlloo -> 0 as n oo uniformly in q = 2,3,... , by Theorem 

3.3, we see that for all k = 1,... ,m 

(Ibq,n,j, qj -3 (Jqqj, Kqqk) = 8j,k 

as n --> oo, uniformly in q = 2, 3 .... This shows that there is a positive integer no 
such that for all n > no and all q = 2,3,... , the m x m matrix [(4'q,n,j, qk)] is 
nonsingular, and hence, {I bq,n,i,.. , giq,n,m} is a linearly independent subset of Yq,n 
Thus dim Yq,n > m. On the other hand, dim Yq,n < dim R(Pq,n) = rank P = m 
for all large n and all q = 2,3.... Hence, dim Yq,n rank P = m. 

(b) We have 

6(R(P), Yq,n) = sup{dist (x, Yq,n) : x E R(P), lixil = 1}. 

Consider x E R(P) with llxll = 1 and Jqx [x, SlX, . . ., SqX]'. If YI E Yq,n, then 
there is some y e R(Pq,n) with y = [Yi, - ,Yq]. Since lix - Yihl < 1Jqx - yl,o we 
have 

dist(x,Yq,n) = inf{flx-yl, :Yl EYq,n} 
< inf{IJJqx-yJ- , y e R(Pq,n)}. 

Let x = Jqx/llJqxlloc, so that x E R(Pq) and llxlHoc = 1. Thus 

dist(x, Yqn) < flJqxflOO inf{fllx - ylK: y e R(Pq,n)} 

? 11Jqxlloo6(R(Pq), R(Pq,n)) 
K max{1, c}6(R(Pq), R(Pq,n))lIxIl, 

since flJqxll,K < max{1, c}llxll, as we have just seen. This implies that 

8(R(P), Yq,n) < max{1, c}6(-R(Pq), R(Pq,n)). 

But since min{ JAI A e- Al}> 1, it follows from Theorem 3.3 that 

8(R(Pq), R(Pq,n)) ?< | (Pq - Pq,n)Pq loo - > 0 

as n --> oo uniformly in q = 2,3.... Hence, we can choose no so large that 
8(R(P),Yq,n) < 1/2 for all n > nO and q = 2,3,.... Since dim Yq,n = dim R(P), 
we have 

6(yq,n,R(P)) < -6 (R(P), Yq, ) < 26(R(P),Yq,n) 



ACCELERATED SPECTRAL APPROXIMATION 1415 

(see [8], p. 264-269). Thus 

6(R(P), Yq,) max{6(R(P), Yqn), (Yq,n R(P))} 
< 26(R(P),Yq,n) 
< 2 max{1, c}6(R(Pq) ,R(Pq,n)) 

< 2 max{1, c}j(R(Pq) I R(Pq,n)) 

Since IlTq,nllfl is bounded in q and n, and 

11 (Tq - Tq,n)Tq 11oo 0, fl(Tq - Tq,n)Tq,mn1oo 0 

as n --> oo uniformly in q, Theorem 2.2 applied to the operators Tq and Tq,n shows 
that 

6(R(Pq),R(Pq,n)) ( 
GC2 min{l( Tq - Tq,n)IR(Pq)IlIo, 

II(Tq - Tq,n)JR(Pq,n) 1O0}, 

where sup,Er II(Tq - ZIq)1 00 ? Ci and supCEr (Tq,m zIq)1 00 <02. But by 
Proposition 3.1 with E= 1, we have 

fl(Tq - Tq,n) R(Pq)floo < (2) |T n)qR(P) 

Also, 

11(Tq - Tq,n) IR(Pq,n)) II fl 
< ? (Tq- Tq,n)Pq,nl||o 

< 2(F) C21(Tq-Tq,n)Tq,rnloo 
C2[Aq T 

< 2(r C2 n n 11 

as we have already seen. (Note that min{lzl: z E F} = 8> 1.) Thus 

b( )Yq, n) Cmi {|(-n)q JR(P) 1, ||(T -T)T| 

for all large n, q = 2,3,... and some constant C, independent of n and q. 

Finally, we consider the general case when min{ IAI : A e- A } > E. We choose 

a = 1/e and consider the scaled operators Tq(a), Pq(a), Tq,n((a) and Pq,n(a). By 
what we have just proved and by Lemma 3.4, 

rank Pq,n = rank Pq,n(a))= rank Pq(a)= rank Pq 

for all large n and q = 2,3... . Also, P(al) = P and the first components of the 

elements of R(Pq,n(a)) and R(Pq,n) are the same, that is, Yq,n(a) = Yqn. Hence 
there is a constant C(al) independent of n and q such that 

6(R(P), Yq,n) = b(R (P(a)), Yq, n(a)) 

< C(al) min { 11 (caT- aTn)q-R( P(o)) 11, 11 (aT- aTn)q aTn 11 } 
max{ca, a2}C(a) T)TJ} = max{l, Ol C(Ol)min { 11 (T T)l(p) ||, || (T -Tnq 1}- 

Hence the result. O 

Recall that A = {A1,... ,m}, where each Aj,j = 1,... ,m, is an eigenvalue of 
T counted according to its algebraic multiplicity and 

A+... + Am 

m 
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Since rank Pq,n m for all large n and all q = 2, 3,.... 

u(Tq,n) n Int F {Aq,n,i ... , Aq,n,m}, 

where each Aq,n,j,j = 1)... ,m, is an eigenvalue of Tq,n counted according to its 
algebraic multiplicity. 

These are the eigenvalues obtained from qth spectral analysis of T. In the words 
of Dellwo and lYiedman, they comprise the legitimate portion of the qth order 
approximate spectra associated with A. 

Let 
Aq,n,l+ + Aq,n,m 

Aq,n = m 

Theorem 3.6. Let min{IAI: A Ec A} > e. Then for all large n and all q 2,3, .... 

IA-Aq,n I< 6q min {f 11 (T -T)R(P) || l (T - n 

for some constant C, independent of n and q. 
If A {=A} and the ascent of A as an eigenvalue of T is 1, then for each i 

1,... ,m, we have 

C' A - Aq,n,i K mm { ||(T - TCq)1R(p)IIll (T - nl 

for some constant C', independent of n and q. 

Proof. First we consider a special case when min{ JAI A Ec A} > 1. By Theorem 
3.3, there is some no such that for all n > no and all q = 2, 3,... , we have 
Jl(Pq - Pq,n)Pqlloo < 1/2. It follows that for all such n and q = 2,3,... , the 
map Aq,n from R(Pq) to R(Pq,n) given by x - Pq,nX is an isomorphism and if 
A` denotes the inverse map from R(Pq,n) to R(Pq), then JJAq-1 II, < 2. The same 
argument also shows that the map Bq,n from R(Pq,n) to R(Pq) given by x - PqX 
is an isomorphism and JIB`_II,, < 2. We choose F so that min{ lzl: z E F} > 1. 
Then by Proposition 3.2, we have 

flPqlloo < 2(F) 0C and flPq,n|loo < 
?0F 

C2, 

where Ci and C2 are independent of n and q. Noting that the algebraic multiplicity 
of each Ai as an eigenvalue of Tq is equal to its algebraic multiplicity as an eigenvalue 
of T, and applying Theorem 2.3 to the operators Tq and Tq,n, we have 

A - Aq,nj < 2min{fllPq,n || ||J(Tq - 
Tq,n)IR(Pq)fl v0, 

IlPq Hc ||l(Tq - Tq,n) R(Pqn) flo} - 

But by Proposition 3.1 with e= 1, we have 

21 Pq,nflooll(Tq-Tq,n)IR(Pq)l0Oo < C2fl(Tq - 
Tq,n)IR(Pq)ll)Oo 

< t(F) 2(IF)cl 11(T - T7)R(lI 

and 

21 Pqll ooll(Tq-Tq,n)fR(Pq,-) 0 ? < (F) C (Tq - Tqm)fR(Pq>) 0 0 

< r f2(r) _Tn)qT8 
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as in the proof of Theorem 3.5(b). Thus 

A -Aq,nm < Cmin {|(T-Tn)'fR(p)l, |(T-Tn)Tn 

for all large n, q = 2, 3,... and some constant C, independent of n and q. 
Now let A = {A}, so that A = A. We have noted that the ascent of A as an 

eigenvalue of Tq is equal to its ascent as an eigenvalue of T, namely 1. Again, 
applying Theorem 2.3 to the operators Tq and Tq,n, we have for j = 1,. .., 

)A - Aq,n,j1 < 2min {Cqn ||Pqnll oo||l(Tq -Tq,n)JR(Pq ) ll oo v 

Dq,nlPq ll0oll (Tq -Tq,n)R(Pq,n) IIo} X 

where 

1-1 

Cq,n S HAIq1R(p )A- A 1Tq,nAq,nIlk HJAIq1R(p ) - Tq1R(pq) l0o 
k=O 

1-1 

Dq,n AIIqR(p ) -Tq,nIR(p 1-) 
1 -kIAIqJR(pq,n) B1TqBq k 

k=O 

Note that min{ zI: z E F} = 8> 1. Therefore, for j = 1,... ,nm we have 

IA - Aq,n,j 11 < Cl min { || (T -Tn )q R(P) II, II (T- Tnq 1} 

for all large n, q = 2, 3,... and some constant C',-independent of n and q. 
Finally, we consider the general when case min{ JAI A E A} > e. We choose 

a = 1/e and consider the scaled operators Tq(ca) and Tq,n(a). By Lemma 3.4, 
we find that aA1,,... , atA, are the eigenvalues of Tq(ca) inside the curve aF and 
aAq,n,li,.. , acAq,n,m are the eigenvalues of Tq,n(al) inside the curve aF, counted 
according to their algebraic multiplicities. By what we have just proved, there is 
some constant C(a), independent of n and q such that 

I a - 6taq,nI < C(a) min{ (aXT- aTn )qIR(PI, II (aT- aTn)q aTnll }, 
so that 

A - Aq,m < max{l, aE}C(aE) mm {fl(T-Tn)q f(p)l, fl(T Tn)qTnl } 

as desired. If A {A}, then the ascent of acA as an eigenvalue of Tq(ca) equals 1. 
Hence the estimates for A - Aq,,jI1,i = ,... , m, follow similarly. Li 

If A = {A} with JAI > e and f is an analytic function in the neighborhood of A, 
then by the functional calculus it is easy to see that for all large n and q = 2,3,... 

1 m c 
f(A) - Ef(Aq,nJ) I < q_1 min {||(T - Tf)R(P)fl, Il(T -T n)qTnl}, 

j=1 

where C is a constant independent of n and q. The above-mentioned estimate is, in 
fact, an accelerated analogue of a result of Descloux, Nassif and Rappaz ([6], [7]). 

Next, we consider approximation of an element of R(P) by an eigenvector ob- 
tained from a higher order spectral analysis of T. 
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Theorem 3.7. Let X = [X1,... ,xq]' be an eigenvector of Tq,m corresponding to 
an eigenvalue in Aq,n such that lixi 1I = 1. If min{ JAI : A e- A} > E, then there is a 
constant C such that 

lix - Pxl 11 < q_ II(T - Tn)T 

for all large n and q = 2,3,... 

Proof. Since Pqx = [Px1, Six,,... , Sq-lXl]t and Pq,nX = x, we have 

flxi - Pxl|| < X - PqXfloo = f(Pq,n - Pq)Pq,nxfloo. 

If min{ JAI A E A} > 1, then JJxJJ,, = llxilI = 1 and hence Theorem 3.3 shows 
there is a constant C with 

lxi - Pxill < ll(Pq,n - Pq)Pq,nllmo < CII(Tq,n - Tq)Tq,nllro = CII(T I. 

If min{ JAI A E A} > 6, then, as before, we choose l = 1/e and consider the 
scaled operators Tq,nm(a), Pq,nm(a), Tq(a) and Pq (a). Since P(a) = P and the first 

components of the elements of R(Pq,n(at)) and R(Pq,n) are the same, there is a 

constant C(al) such that 

lix - Pxil ?1 < C(a) | (aT - aTn )fq aTnll Eq l ) (T - nll 

O 

The result in Theorem 3.7 was also obtained by Dellwo and Friedman in [5]. 

Let A = {A} and 1 be the ascent of A. Let Aq,n E -Aq,n such that Aq,n - A as 

n -> oo uniformly in q = 2, 3, ... 

Theorem 3.8. Let JAI > ,. Suppose that 

Wq,n Wq,mn 
Wq,n =Wqn ( E N(Tqn-Aq,nlq) 

[q'Aq,nm (Aq,n )q-1 j_ q,q 

with llwq,nmI = 1. Then there is some uq,n E N(T - AI) such that 

I|Wq,n - Uqnl < c { Eq-1 II|(T - Tn)q IR(P)II} 

for all q = 2,3,... , where C is a constant independent of q and n. 

Proof. Consider the particular case when JAI > 1. Then for all large n and q 

2,3,... , JAq,nj > 1. Thus lJwq,nflOO = IIWq,nlj = 1. Applying Theorem 2.4 to the 

operators Tq and Tq,n, we obtain some uq,n E N(Tq - AIq) such that 

flWq,n - Uq,n l oo < C {||(Tq - Tq,n) R(Pq) ll oo} 

Since uq,n = Jquq,n for some uq,nT E N(T - AI), Proposition 3.1 (with E 1) shows 
that 

lwq,n - Uq,mnl| < flWq,n - Uq,nlloo < C' {fl(T -Tn)q R(P) 

for some constant C', independent of n and q. 
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Finally, to treat the general case, we choose l = 1/e and consider the scaled 
operators Tq(ca), Pq(at), Tq,n(at) and Pq,n(Ol). Since P(oa) = P and the first com- 
ponents of the elements of R(Pq,n(ca)) and R(Pq,n) are the same, there is a constant 
C'(al) such that 

lUq,n - Wq,n ? C'(o) {(oT -aTn)qlR(P) 

= 
l 

C(a) |(T -Tn)qlR(P)l, *El 

Hence the result follows. 

4. NUMERICAL EXAMPLES 

Let A be a nonzero defective eigenvalue of T of algebraic multiplicity m and ascent 
1 > 1. We illustrate by numerical examples how the weighted arithmetic mean Aq,n 
gives a better approximation than do the individual eigenvalues Aq,n,l , , Aq,n,m, 
provided by the qth order spectral analysis when q = 2, 3, 4, 5, 6. 

Let X = C([a, b]) and T be an integral operator given by 

b 
Tx(s) - j k(s,t)x(t)dt, x E X, s E [a,b], 

where the kernel k is continuous on [a, b] x [a, b]. In actual computations, T is 
replaced by its approximation T given by 

M 

Tx(s) =Ewj )k(s,t( ))x(tj )), x E X, sE [a, b], 
j=1 

where M is very large. Here the nodes t(M) ,t(M) in [a,b] and the weights 
W(M) W(M) in C give a convergent quadrature formula 

M 

Qx = ,w M)x(tjM), x E X. 
j=1 

Consider a- finite rank operator Tn given by 
n 

TnX = E(x) X*)xj, x E X) 
j=1 

where x,... ., xn are in X and x1,... , x* are in X*. Then the eigenvalue problem 
for Tq,n can be reduced to an eigenvalue problem for the matrix Aq,n where 

An?) An () ... ... A n-l) An n A ; 

In 0 .. .. 0 

Aq,n 0 . 

0 0 ... In 0 

Here A$2k) = [(l! x?)] for k = 0,1,... , q-1 and In is the n x n identity matrix. 
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Note that this matrix eigenvalue problem is of size nq. If IT-Tnll - - 0, then 
both f1(TTn)ql)R(P)fl and f1(T-Tn)qTnfl are less than or equal to a constant times 
IlT - Tn Iq Thus if we keep n fixed and increase the order q of the spectral analysis, 
then the size of the matrix eigenvalue problem increases arithmetically with respect 
to q while the accuracy of the spectral approximation increases geometrically. 

Example. Let a = 0, b = and 

k(s t) _ s-t/2, if 0<s<t< 1 
t/2, if 0<t<s<1. 

Then each Ay == 1(2j - 1)2w2 1 j 2, ... , is an eigenvalue of T of algebraic mul- 

tiplicity m 2 and ascent I 2. We have chosen the nodes and weights as follows: 

_ __/X/.$ if i is odd, 

ti - i-1+ I/v'3 
m Mi) lf i is even, 

and 

w(M) = 
1 il ... , M. 

These are obtained by the comp9und Gauss Two Point Rule on [0,1]. 
For n <? M, let w(n)... ,wn) and tn,... , tn) be the weights and the nodes, 

respectively, associated with the compound Gauss Two Point Rule on [0,1]. Let 
(n) (n) (n) (n) 

eln)7... ,en ) be the hat functions corresponding to the nodes t ,. ... , tn. We 
consider the following two approximations of the integral operator T. 

i) Nystr6m Approximation: 

n 

TnN x(s) =EW(n) k(s, t(n) )x(t(n) ) X x E Ct [O, 1] ), s E [O, 1] . 
j=l 

ii) Projection Approximation: 

n 
TP = 7nT, where rnx Zx(t(n))e(n), x E C([0, 1]). 

j=l 

Note that the sequence (T4') satisfies the hypotheses (H1) and (H2), but IlT -TnNI 
does not tend to 0 as n -* oo (cf. [3], p. 197). On the other hand, IT - T -*j 

- 0 
as n -* oo (cf. Theorem 4.5 of [3]). 

Let A denote the arithmetic mean of the two eigenvalues of T which are close 
to the largest eigenvalue A = 1/7r2 of T. Also, let Aq,n,l and Aq,n,2 denote the 
eigenvalues provided by the q th order spectral analysis which are close to A, and 

Aq,n = q,n,i + qn,2 . We have taken M = 500 and n = 10, 20,30,40. The following 2 
computations were performed on HP9000/700 model J200 in single precision with 
an accuracy of 7 digits and in double precision with an accuracy of 15 digits. These 
numerical results illustrate that, in general, the rate of convergence of the Aq,n to 
A is faster than that of the individual eigenvalues Aq,n,l and Aq,n,2. 
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CALCULATIONS IN SINGLE PRECISION 

TABLE 4.1. q = 2, TABLE 4.2. q = 2, 
Nystr6m Approximation Projection Approximation 

n A - Aq,n,il A - Aq,n,21 A - Aq,nl n 1A - Aq,n,il I - Aq,n,21 A - Aq,nI 

10 8.96x 10-4 9.50x 10-4 9.23x10-4 10 5.29x 10-5 5.29x 10-5 9.79x10-6 

20 2.15x 10-4 2.36x 10-4 2.25x10-4 20 3.81x 10-5 3.81x 10-5 5.74x10-7 

30 1.02x 10-4 1.02x10-4 9.98x 10-5 30 2.00x10-5 2.00x10-5 7.45x10-8 

40 1.44x 10-5 9.78x 10-5 5.61x10-5 40 3.37x 10-5 3.35x 10-5 8.19x10-8 

TABLE 4.3. q = 3, TABLE 4.4. q = 3, 
Nystr6m Approximation Projection Approximation 

n 1 - Aq,n,lI 1A - Aq,n,21 A - Aq,nl n 1 - Aq,n,il A - Aq,n,21 A - Aq,nl 

10 6.69x 10-5 6.69x 10-5 1.37x10-5 10 1.88x 10-5 1.88x 10-5 2.98x10-8 

20 3.25x 10-5 3.25x 10-5 8.94x10-7 20 6.91x 10-5 6.89x 10-5 7.45x10-8 

30 3.93x 10-5 3.87x 10-5 3.05x10-7 30 5.75x 10-5 5.75x 10-5 5.96x10-8 

40 4.67x 10-5 4.67x 10-5 1.04x10-7 40 l..99x 10-5 1.98x 10-5 5.96x 10-8 

TABLE 4.5. q = 4, TABLE 4.6. q = 4, 
Nystr6m Approximation Projection Approximation 

n IA - Aq,n,lI IA - Aq,n,21 A - qnl n 1 - Aq,n,lI 1A - Aq,n,21 TA - Aq,nl 

10 2.65x 10-5 4.27x 10-5 8.08x10-6 10 1.71x 10-5 1.71x 10-5 1.04x10-7 

20 3.31x 10-5 3.31x 10-5 4.10x10-7 20 6.47x 10-5 6.45x 10-5 1.04x10-7 

30 3.95x 10-5 3.95x 10-5 2.98x10-8 30 3.99x 10-5 3.99x 10-5 5.96x10-8 

40 5.34x 10-5 5.34x 10-5 3.72x10-8 40 1.07x 10-5 1.07x 10-5 8.94x10-8 

CALCULATIONS IN DOUBLE PRECISION 

TABLE 4.7. q = 5, TABLE 4.8. q = 5, 
Nystr6m Approximation Projection Approximation 

n 1 - Aq,n,ll A1 - Aq,n,21 A - Aq,nl ||n | -Aq,n,ijl 1A-Aq,n,21 A - Aq,nl 

10 1.72x1O-7 1.71x10-7 1.72x10-7 10 2.57x10-9 2.57x10-9 1.99x10-11 

20 4.22x10-9 1.03x10-9 2.62x10-9 20 1.30x10-9 1.30x10-9 1.93x10-14 

30 2.11xlO-9 2.11xlO-9 2.30x 10-10 30 1.63x10-9 1.63x10-9 2.22x10-16 

40 3.01x10-9 3.01x10-9 4.11x 10-11 40 2.24x10-9 2.24x10-9 5.97x10-16 

TABLE 4.9. q = 6, TABLE 4.10. q = 6, 
Nystr6m Approximation Projection Approximation 

n IA - Aq,n,l A - Aq,n,21 |A - Aq,n| n A1 - Aq,n,I 1A - Aq,n,21 A - Aq,nl 

10 7.39x10-8 7.39x10-8 7.37x10-8 10 7.80x10-10 7.81xl1-100 2.61x10-13 

20 4.64x-10?10 2.67x10-9 1.10X10-9 20 1.29x10-9 1.29x10-9 5.69x10-16 

30 2.25x10-9 2.25x10-9 9.66x 101- 1 30 1.69x10-9 1.69x10-9 5.27X10-16 

40 8.74x10?10 8.74x10?10 1.73x-10-11 40 1.75x10-9 1.75x10-9 5.83x10-16 
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